ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.07993
53
4

Parallel Metropolis chains with cooperative adaptation

26 September 2015
Luca Martino
Victor Elvira
D. Luengo
F. Louzada
ArXiv (abs)PDFHTML
Abstract

Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) algorithms, have become very popular in signal processing over the last years. In this work, we introduce a novel MCMC scheme where parallel MCMC chains interact, adapting cooperatively the parameters of their proposal functions. Furthermore, the novel algorithm distributes the computational effort adaptively, rewarding the chains which are providing better performance and, possibly even stopping other ones. These extinct chains can be reactivated if the algorithm considers necessary. Numerical simulations shows the benefits of the novel scheme.

View on arXiv
Comments on this paper