ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.09089
25
4

Moving Object Detection in Video Using Saliency Map and Subspace Learning

30 September 2015
Yanwei Pang
Li Ye
Xuelong Li
Jing Pan
ArXivPDFHTML
Abstract

Moving object detection is a key to intelligent video analysis. On the one hand, what moves is not only interesting objects but also noise and cluttered background. On the other hand, moving objects without rich texture are prone not to be detected. So there are undesirable false alarms and missed alarms in many algorithms of moving object detection. To reduce the false alarms and missed alarms, in this paper, we propose to incorporate a saliency map into an incremental subspace analysis framework where the saliency map makes estimated background has less chance than foreground (i.e., moving objects) to contain salient objects. The proposed objective function systematically takes account into the properties of sparsity, low-rank, connectivity, and saliency. An alternative minimization algorithm is proposed to seek the optimal solutions. Experimental results on the Perception Test Images Sequences demonstrate that the proposed method is effective in reducing false alarms and missed alarms.

View on arXiv
Comments on this paper