ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.04356
30
7

Group-Invariant Subspace Clustering

15 October 2015
Shuchin Aeron
Eric Kernfeld
ArXiv (abs)PDFHTML
Abstract

In this paper we consider the problem of group invariant subspace clustering where the data is assumed to come from a union of group-invariant subspaces of a vector space, i.e. subspaces which are invariant with respect to action of a given group. Algebraically, such group-invariant subspaces are also referred to as submodules. Similar to the well known Sparse Subspace Clustering approach where the data is assumed to come from a union of subspaces, we analyze an algorithm which, following a recent work [1], we refer to as Sparse Sub-module Clustering (SSmC). The method is based on finding group-sparse self-representation of data points. In this paper we primarily derive general conditions under which such a group-invariant subspace identification is possible. In particular we extend the geometric analysis in [2] and in the process we identify a related problem in geometric functional analysis.

View on arXiv
Comments on this paper