ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.05203
6
63

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015

18 October 2015
Graham Neubig
Makoto Morishita
Satoshi Nakamura
ArXivPDFHTML
Abstract

This year, the Nara Institute of Science and Technology (NAIST)'s submission to the 2015 Workshop on Asian Translation was based on syntax-based statistical machine translation, with the addition of a reranking component using neural attentional machine translation models. Experiments re-confirmed results from previous work stating that neural MT reranking provides a large gain in objective evaluation measures such as BLEU, and also confirmed for the first time that these results also carry over to manual evaluation. We further perform a detailed analysis of reasons for this increase, finding that the main contributions of the neural models lie in improvement of the grammatical correctness of the output, as opposed to improvements in lexical choice of content words.

View on arXiv
Comments on this paper