ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.08266
17
25
v1v2 (latest)

Computing the Ramsey Number R(4,3,3) using Abstraction and Symmetry breaking

28 October 2015
M. Codish
Michael Frank
Avraham Itzhakov
Alice Miller
ArXiv (abs)PDFHTML
Abstract

The number R(4,3,3)R(4,3,3)R(4,3,3) is often presented as the unknown Ramsey number with the best chances of being found "soon". Yet, its precise value has remained unknown for almost 50 years. This paper presents a methodology based on \emph{abstraction} and \emph{symmetry breaking} that applies to solve hard graph edge-coloring problems. The utility of this methodology is demonstrated by using it to compute the value R(4,3,3)=30R(4,3,3)=30R(4,3,3)=30. Along the way it is required to first compute the previously unknown set R(3,3,3;13){\cal R}(3,3,3;13)R(3,3,3;13) consisting of 78{,}892 Ramsey colorings.

View on arXiv
Comments on this paper