ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.08385
27
5

Linear-time Detection of Non-linear Changes in Massively High Dimensional Time Series

28 October 2015
H. Nguyen
Jilles Vreeken
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Change detection in multivariate time series has applications in many domains, including health care and network monitoring. A common approach to detect changes is to compare the divergence between the distributions of a reference window and a test window. When the number of dimensions is very large, however, the naive approach has both quality and efficiency issues: to ensure robustness the window size needs to be large, which not only leads to missed alarms but also increases runtime. To this end, we propose LIGHT, a linear-time algorithm for robustly detecting non-linear changes in massively high dimensional time series. Importantly, LIGHT provides high flexibility in choosing the window size, allowing the domain expert to fit the level of details required. To do such, we 1) perform scalable PCA to reduce dimensionality, 2) perform scalable factorization of the joint distribution, and 3) scalably compute divergences between these lower dimensional distributions. Extensive empirical evaluation on both synthetic and real-world data show that LIGHT outperforms state of the art with up to 100% improvement in both quality and efficiency.

View on arXiv
Comments on this paper