ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.08568
73
55
v1v2v3 (latest)

Feature-Based Diversity Optimization for Problem Instance Classification

29 October 2015
Wanru Gao
Samadhi Nallaperuma
Frank Neumann
ArXiv (abs)PDFHTML
Abstract

Understanding the behaviour of heuristic search methods is a challenge. This even holds for simple local search methods such as 2-OPT for the Traveling Salesperson problem. In this paper, we present a general framework that is able to construct a diverse set of instances that are hard or easy for a given search heuristic. Such a diverse set is obtained by using an evolutionary algorithm for constructing hard or easy instances that are diverse with respect to different features of the underlying problem. Examining the constructed instance sets, we show that many combinations of two or three features give a good classification of the TSP instances in terms of whether they are hard to be solved by 2-OPT.

View on arXiv
Comments on this paper