ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.00152
39
61
v1v2v3 (latest)

Preconditioned Data Sparsification for Big Data with Applications to PCA and K-means

31 October 2015
Farhad Pourkamali Anaraki
Stephen Becker
ArXiv (abs)PDFHTML
Abstract

We analyze a compression scheme for large data sets that randomly keeps a small percentage of the components of each data sample. The benefit is that the output is a sparse matrix and therefore subsequent processing, such as PCA or K-means, is significantly faster, especially in a distributed-data setting. Furthermore, the sampling is single-pass and applicable to streaming data. The sampling mechanism is a variant of previous methods proposed in the literature combined with a randomized preconditioning to smooth the data. We provide guarantees for PCA in terms of the covariance matrix, and guarantees for K-means in terms of the error in the center estimators at a given step. We present numerical evidence to show both that our bounds are nearly tight and that our algorithms provide a real benefit when applied to standard test data sets, as well as providing certain benefits over related sampling approaches.

View on arXiv
Comments on this paper