ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.03028
11
4

Online Action Recognition based on Incremental Learning of Weighted Covariance Descriptors

10 November 2015
Chang-Fu Tang
Pichao Wang
Jing Zhang
    OffRL
ArXivPDFHTML
Abstract

Different from traditional action recognition based on video segments, online action recognition aims to recognize actions from unsegmented streams of data in a continuous manner. One way for online recognition is based on the evidence accumulation over time to make predictions from stream videos. This paper presents a fast yet effective method to recognize actions from stream of noisy skeleton data, and a novel weighted covariance descriptor is adopted to accumulate evidence. In particular, a fast incremental updating method for the weighted covariance descriptor is developed for accumulation of temporal information and online prediction. The weighted covariance descriptor takes the following principles into consideration: past frames have less contribution for recognition and recent and informative frames such as key frames contribute more to the recognition. The online recognition is achieved using a simple nearest neighbor search against a set of offline trained action models. Experimental results on MSC-12 Kinect Gesture dataset and our newly constructed online action recognition dataset have demonstrated the efficacy of the proposed method.

View on arXiv
Comments on this paper