ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.04524
23
7

Efficient Training of Very Deep Neural Networks for Supervised Hashing

14 November 2015
Ziming Zhang
Yuting Chen
Venkatesh Saligrama
ArXivPDFHTML
Abstract

In this paper, we propose training very deep neural networks (DNNs) for supervised learning of hash codes. Existing methods in this context train relatively "shallow" networks limited by the issues arising in back propagation (e.e. vanishing gradients) as well as computational efficiency. We propose a novel and efficient training algorithm inspired by alternating direction method of multipliers (ADMM) that overcomes some of these limitations. Our method decomposes the training process into independent layer-wise local updates through auxiliary variables. Empirically we observe that our training algorithm always converges and its computational complexity is linearly proportional to the number of edges in the networks. Empirically we manage to train DNNs with 64 hidden layers and 1024 nodes per layer for supervised hashing in about 3 hours using a single GPU. Our proposed very deep supervised hashing (VDSH) method significantly outperforms the state-of-the-art on several benchmark datasets.

View on arXiv
Comments on this paper