ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06683
66
92

Top-k Multiclass SVM

20 November 2015
Maksim Lapin
Matthias Hein
Bernt Schiele
    VLM
ArXiv (abs)PDFHTML
Abstract

Class ambiguity is typical in image classification problems with a large number of classes. When classes are difficult to discriminate, it makes sense to allow k guesses and evaluate classifiers based on the top-k error instead of the standard zero-one loss. We propose top-k multiclass SVM as a direct method to optimize for top-k performance. Our generalization of the well-known multiclass SVM is based on a tight convex upper bound of the top-k error. We propose a fast optimization scheme based on an efficient projection onto the top-k simplex, which is of its own interest. Experiments on five datasets show consistent improvements in top-k accuracy compared to various baselines.

View on arXiv
Comments on this paper