ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06964
12
30

Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders

22 November 2015
Alexander Ororbia
C. Lee Giles
David Reitter
    AI4CE
ArXivPDFHTML
Abstract

Two novel deep hybrid architectures, the Deep Hybrid Boltzmann Machine and the Deep Hybrid Denoising Auto-encoder, are proposed for handling semi-supervised learning problems. The models combine experts that model relevant distributions at different levels of abstraction to improve overall predictive performance on discriminative tasks. Theoretical motivations and algorithms for joint learning for each are presented. We apply the new models to the domain of data-streams in work towards life-long learning. The proposed architectures show improved performance compared to a pseudo-labeled, drop-out rectifier network.

View on arXiv
Comments on this paper