ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.00820
66
16
v1v2 (latest)

A unified approach to self-normalized block sampling

2 December 2015
Shuyang Bai
M. Taqqu
Ting Zhang
ArXiv (abs)PDFHTML
Abstract

The inference procedure for the mean of a stationary time series is usually quite different under various model assumptions because the partial sum process behaves differently depending on whether the time series is short or long-range dependent, or whether it has a light or heavy-tailed marginal distribution. In the current paper, we develop an asymptotic theory for the self-normalized block sampling, and prove that the corresponding block sampling method can provide a unified inference approach for the aforementioned different situations in the sense that it does not require the {\em a priori} estimation of auxiliary parameters. Monte Carlo simulations are presented to illustrate its finite-sample performance. The R function implementing the method is available from the authors.

View on arXiv
Comments on this paper