ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.03958
9
163

RNN Fisher Vectors for Action Recognition and Image Annotation

12 December 2015
Guy Lev
Gil Sadeh
Benjamin Klein
Lior Wolf
ArXivPDFHTML
Abstract

Recurrent Neural Networks (RNNs) have had considerable success in classifying and predicting sequences. We demonstrate that RNNs can be effectively used in order to encode sequences and provide effective representations. The methodology we use is based on Fisher Vectors, where the RNNs are the generative probabilistic models and the partial derivatives are computed using backpropagation. State of the art results are obtained in two central but distant tasks, which both rely on sequences: video action recognition and image annotation. We also show a surprising transfer learning result from the task of image annotation to the task of video action recognition.

View on arXiv
Comments on this paper