607

Recent Advances in Convolutional Neural Networks

Abstract

In the last few years, deep learning has lead to very good performance on a variety of problems, such as object recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Due to the lack of training data and computing power in early days, it is hard to train a large high-capacity convolutional neural network without overfitting. Recently, with the rapid growth of data size and the increasing power of graphics processor unit, many researchers have improved the convolutional neural networks and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. Besides, we also introduce some applications of convolutional neural networks in computer vision.

View on arXiv
Comments on this paper