ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.08086
23
418

Part-Stacked CNN for Fine-Grained Visual Categorization

26 December 2015
Shaoli Huang
Zhe Xu
Dacheng Tao
Ya Zhang
ArXivPDFHTML
Abstract

In the context of fine-grained visual categorization, the ability to interpret models as human-understandable visual manuals is sometimes as important as achieving high classification accuracy. In this paper, we propose a novel Part-Stacked CNN architecture that explicitly explains the fine-grained recognition process by modeling subtle differences from object parts. Based on manually-labeled strong part annotations, the proposed architecture consists of a fully convolutional network to locate multiple object parts and a two-stream classification network that en- codes object-level and part-level cues simultaneously. By adopting a set of sharing strategies between the computation of multiple object parts, the proposed architecture is very efficient running at 20 frames/sec during inference. Experimental results on the CUB-200-2011 dataset reveal the effectiveness of the proposed architecture, from both the perspective of classification accuracy and model interpretability.

View on arXiv
Comments on this paper