ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00225
78
38

Identifying the Optimal Integration Time in Hamiltonian Monte Carlo

2 January 2016
M. Betancourt
ArXiv (abs)PDFHTML
Abstract

By leveraging the natural geometry of a smooth probabilistic system, Hamiltonian Monte Carlo yields computationally efficient Markov Chain Monte Carlo estimation. At least provided that the algorithm is sufficiently well-tuned. In this paper I show how the geometric foundations of Hamiltonian Monte Carlo implicitly identify the optimal choice of these parameters, especially the integration time. I then consider the practical consequences of these principles in both existing algorithms and a new implementation called \emph{Exhaustive Hamiltonian Monte Carlo} before demonstrating the utility of these ideas in some illustrative examples.

View on arXiv
Comments on this paper