ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00815
97
42
v1v2v3v4 (latest)

Semi-parametric efficiency bounds for high-dimensional models

5 January 2016
Jana Janková
Sara van de Geer
ArXiv (abs)PDFHTML
Abstract

Asymptotic lower bounds for estimation play a fundamental role in assessing the quality of statistical procedures. In this paper we propose a framework for obtaining semi-parametric efficiency bounds for sparse high-dimensional models, where the dimension of the parameter is larger than the sample size. We adopt a semi-parametric point of view: we concentrate on one dimensional functions of a high-dimensional parameter. We follow two different approaches to reach the lower bounds: asymptotic Cram\'er-Rao bounds and Le Cam's type of analysis. Both these approaches allow us to define a class of asymptotically unbiased or "regular" estimators for which a lower bound is derived. Consequently, we show that certain estimators obtained by de-sparsifying (or de-biasing) an ℓ1\ell_1ℓ1​-penalized M-estimator are asymptotically unbiased and achieve the lower bound on the variance: thus in this sense they are asymptotically efficient. The paper discusses in detail the linear regression model and the Gaussian graphical model.

View on arXiv
Comments on this paper