ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.02487
37
4

Facial Expression Recognition in the Wild using Rich Deep Features

11 January 2016
Abubakrelsedik Karali
A. Bassiouny
M. El-Saban
    VLM
ArXiv (abs)PDFHTML
Abstract

Facial Expression Recognition is an active area of research in computer vision with a wide range of applications. Several approaches have been developed to solve this problem for different benchmark datasets. However, Facial Expression Recognition in the wild remains an area where much work is still needed to serve real-world applications. To this end, in this paper we present a novel approach towards facial expression recognition. We fuse rich deep features with domain knowledge through encoding discriminant facial patches. We conduct experiments on two of the most popular benchmark datasets; CK and TFE. Moreover, we present a novel dataset that, unlike its precedents, consists of natural - not acted - expression images. Experimental results show that our approach achieves state-of-the-art results over standard benchmarks and our own dataset

View on arXiv
Comments on this paper