ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.05030
35
172

PN-Net: Conjoined Triple Deep Network for Learning Local Image Descriptors

19 January 2016
Vassileios Balntas
Edward Johns
Lilian Tang
K. Mikolajczyk
ArXivPDFHTML
Abstract

In this paper we propose a new approach for learning local descriptors for matching image patches. It has recently been demonstrated that descriptors based on convolutional neural networks (CNN) can significantly improve the matching performance. Unfortunately their computational complexity is prohibitive for any practical application. We address this problem and propose a CNN based descriptor with improved matching performance, significantly reduced training and execution time, as well as low dimensionality. We propose to train the network with triplets of patches that include a positive and negative pairs. To that end we introduce a new loss function that exploits the relations within the triplets. We compare our approach to recently introduced MatchNet and DeepCompare and demonstrate the advantages of our descriptor in terms of performance, memory footprint and speed i.e. when run in GPU, the extraction time of our 128 dimensional feature is comparable to the fastest available binary descriptors such as BRIEF and ORB.

View on arXiv
Comments on this paper