ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.05347
4
82

Deep Perceptual Mapping for Cross-Modal Face Recognition

20 January 2016
M. Sarfraz
Rainer Stiefelhagen
    CVBM
ArXivPDFHTML
Abstract

Cross modal face matching between the thermal and visible spectrum is a much desired capability for night-time surveillance and security applications. Due to a very large modality gap, thermal-to-visible face recognition is one of the most challenging face matching problem. In this paper, we present an approach to bridge this modality gap by a significant margin. Our approach captures the highly non-linear relationship between the two modalities by using a deep neural network. Our model attempts to learn a non-linear mapping from visible to thermal spectrum while preserving the identity information. We show substantive performance improvement on three difficult thermal-visible face datasets. The presented approach improves the state-of-the-art by more than 10\% on UND-X1 dataset and by more than 15-30\% on NVESD dataset in terms of Rank-1 identification. Our method bridges the drop in performance due to the modality gap by more than 40\%.

View on arXiv
Comments on this paper