ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02159
57
55

Daleel: Simplifying Cloud Instance Selection Using Machine Learning

5 February 2016
F. Samreen
Yehia El-khatib
Matthew Rowe
G. Blair
ArXiv (abs)PDFHTML
Abstract

Decision making in cloud environments is quite challenging due to the diversity in service offerings and pricing models, especially considering that the cloud market is an incredibly fast moving one. In addition, there are no hard and fast rules, each customer has a specific set of constraints (e.g. budget) and application requirements (e.g. minimum computational resources). Machine learning can help address some of the complicated decisions by carrying out customer-specific analytics to determine the most suitable instance type(s) and the most opportune time for starting or migrating instances. We employ machine learning techniques to develop an adaptive deployment policy, providing an optimal match between the customer demands and the available cloud service offerings. We provide an experimental study based on extensive set of job executions over a major public cloud infrastructure.

View on arXiv
Comments on this paper