ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02889
17
11

Ergodicity of Markov chain Monte Carlo with reversible proposal

9 February 2016
K. Kamatani
ArXivPDFHTML
Abstract

We describe ergodic properties of some Metropolis-Hastings (MH) algorithms for heavy-tailed target distributions. The analysis usually falls into sub-geometric ergodicity framework but we prove that the mixed preconditioned Crank-Nicolson (MpCN) algorithm has geometric ergodicity even for heavy-tailed target distributions. This useful property comes from the fact that the MpCN algorithm becomes a random-walk Metropolis algorithm under suitable transformation.

View on arXiv
Comments on this paper