ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05436
21
77

Low-Rank Factorization of Determinantal Point Processes for Recommendation

17 February 2016
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
ArXivPDFHTML
Abstract

Determinantal point processes (DPPs) have garnered attention as an elegant probabilistic model of set diversity. They are useful for a number of subset selection tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. In this work we present a new method for learning the DPP kernel from observed data using a low-rank factorization of this kernel. We show that this low-rank factorization enables a learning algorithm that is nearly an order of magnitude faster than previous approaches, while also providing for a method for computing product recommendation predictions that is far faster (up to 20x faster or more for large item catalogs) than previous techniques that involve a full-rank DPP kernel. Furthermore, we show that our method provides equivalent or sometimes better predictive performance than prior full-rank DPP approaches, and better performance than several other competing recommendation methods in many cases. We conduct an extensive experimental evaluation using several real-world datasets in the domain of product recommendation to demonstrate the utility of our method, along with its limitations.

View on arXiv
Comments on this paper