57
16

Fast Gibbs sampling for high-dimensional Bayesian inversion

Abstract

Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures, this can be a significant advantage. Alongside theoretical progress, various new computational techniques allow to sample very high dimensional posterior distributions: In [Lucka2012], a Markov chain Monte Carlo (MCMC) posterior sampler was developed for linear inverse problems with 1\ell_1-type priors. In this article, we extend this single component Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general pq\ell_p^q priors with additional hard constraints. Besides a fast computation of the conditional, single component densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can be utilized for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples, including the inversion of computed tomography (CT) data with the popular isotropic total variation (TV) prior.

View on arXiv
Comments on this paper