ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.07871
11
12

Exact Bayesian inference for off-line change-point detection in tree-structured graphical models

25 March 2016
L. Schwaller
Stephane S. Robin
ArXivPDFHTML
Abstract

We consider the problem of change-point detection in multivariate time-series. The multivariate distribution of the observations is supposed to follow a graphical model, whose graph and parameters are affected by abrupt changes throughout time. We demonstrate that it is possible to perform exact Bayesian inference whenever one considers a simple class of undirected graphs called spanning trees as possible structures. We are then able to integrate on the graph and segmentation spaces at the same time by combining classical dynamic programming with algebraic results pertaining to spanning trees. In particular, we show that quantities such as posterior distributions for change-points or posterior edge probabilities over time can efficiently be obtained. We illustrate our results on both synthetic and experimental data arising from biology and neuroscience.

View on arXiv
Comments on this paper