67
110

TextProposals: a Text-specific Selective Search Algorithm for Word Spotting in the Wild

Abstract

The use of object proposals in scene text understanding tasks is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way. Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers show competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10 percent f-score the best-performing method in the last ICDAR Robust Reading Competition. Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.

View on arXiv
Comments on this paper