Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex

Abstract
We discuss relations between Residual Networks (ResNet), Recurrent Neural Networks (RNNs) and the primate visual cortex. We begin with the observation that a special type of shallow RNN is exactly equivalent to a very deep ResNet with weight sharing among the layers. A direct implementation of such a RNN, although having orders of magnitude fewer parameters, leads to a performance similar to the corresponding ResNet. We propose 1) a generalization of both RNN and ResNet architectures and 2) the conjecture that a class of moderately deep RNNs is a biologically-plausible model of the ventral stream in visual cortex. We demonstrate the effectiveness of the architectures by testing them on the CIFAR-10 and ImageNet dataset.
View on arXivComments on this paper