ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.03650
29
426

Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks

13 April 2016
Junyuan Xie
Ross B. Girshick
Ali Farhadi
    3DH
ArXivPDFHTML
Abstract

As 3D movie viewing becomes mainstream and Virtual Reality (VR) market emerges, the demand for 3D contents is growing rapidly. Producing 3D videos, however, remains challenging. In this paper we propose to use deep neural networks for automatically converting 2D videos and images to stereoscopic 3D format. In contrast to previous automatic 2D-to-3D conversion algorithms, which have separate stages and need ground truth depth map as supervision, our approach is trained end-to-end directly on stereo pairs extracted from 3D movies. This novel training scheme makes it possible to exploit orders of magnitude more data and significantly increases performance. Indeed, Deep3D outperforms baselines in both quantitative and human subject evaluations.

View on arXiv
Comments on this paper