ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.04835
11
187

SSP: Semantic Space Projection for Knowledge Graph Embedding with Text Descriptions

17 April 2016
Han Xiao
Minlie Huang
Xiaoyan Zhu
ArXivPDFHTML
Abstract

Knowledge representation is an important, long-history topic in AI, and there have been a large amount of work for knowledge graph embedding which projects symbolic entities and relations into low-dimensional, real-valued vector space. However, most embedding methods merely concentrate on data fitting and ignore the explicit semantic expression, leading to uninterpretable representations. Thus, traditional embedding methods have limited potentials for many applications such as question answering, and entity classification. To this end, this paper proposes a semantic representation method for knowledge graph \textbf{(KSR)}, which imposes a two-level hierarchical generative process that globally extracts many aspects and then locally assigns a specific category in each aspect for every triple. Since both aspects and categories are semantics-relevant, the collection of categories in each aspect is treated as the semantic representation of this triple. Extensive experiments justify our model outperforms other state-of-the-art baselines substantially.

View on arXiv
Comments on this paper