We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any H in (0,1) and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator's practical performance when the number of datapoints is moderate.
View on arXiv