54
344

Agnostic Estimation of Mean and Covariance

Abstract

We consider the problem of estimating the mean and covariance of a distribution from iid samples in Rn\mathbb{R}^n, in the presence of an η\eta fraction of malicious noise; this is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. The agnostic problem includes many interesting special cases, e.g., learning the parameters of a single Gaussian (or finding the best-fit Gaussian) when η\eta fraction of data is adversarially corrupted, agnostically learning a mixture of Gaussians, agnostic ICA, etc. We present polynomial-time algorithms to estimate the mean and covariance with error guarantees in terms of information-theoretic lower bounds. As a corollary, we also obtain an agnostic algorithm for Singular Value Decomposition.

View on arXiv
Comments on this paper