End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
- SSL
In this paper, we propose a new image representation based on a multilayer kernel machine that performs end-to-end learning. Unlike traditional kernel methods, where the kernel is handcrafted or adapted to data in an unsupervised manner, we learn how to shape the kernel for a supervised prediction problem. We proceed by generalizing convolutional kernel networks, which originally provide unsupervised image representations, and we derive backpropagation rules to optimize model parameters. As a result, we obtain a new type of convolutional neural network with the following properties: (i) at each layer, learning filters is equivalent to optimizing a linear subspace in a reproducing kernel Hilbert space (RKHS), where we project data, (ii) the network may be learned with supervision or without, (iii) the model comes with a natural regularization function (the norm in the RKHS). We show that our method achieves reasonably competitive performance on some standard "deep learning" image classification datasets such as CIFAR-10 and SVHN, and also state-of-the-art results for image super-resolution, demonstrating the applicability of our approach to a large variety of image-related tasks.
View on arXiv