ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06353
15
103

Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction

20 May 2016
Marcin Junczys-Dowmunt
Roman Grundkiewicz
    MoE
ArXivPDFHTML
Abstract

In this work, we study parameter tuning towards the M^2 metric, the standard metric for automatic grammar error correction (GEC) tasks. After implementing M^2 as a scorer in the Moses tuning framework, we investigate interactions of dense and sparse features, different optimizers, and tuning strategies for the CoNLL-2014 shared task. We notice erratic behavior when optimizing sparse feature weights with M^2 and offer partial solutions. We find that a bare-bones phrase-based SMT setup with task-specific parameter-tuning outperforms all previously published results for the CoNLL-2014 test set by a large margin (46.37% M^2 over previously 41.75%, by an SMT system with neural features) while being trained on the same, publicly available data. Our newly introduced dense and sparse features widen that gap, and we improve the state-of-the-art to 49.49% M^2.

View on arXiv
Comments on this paper