ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07051
52
160

Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent

23 May 2016
Qinqing Zheng
John D. Lafferty
ArXivPDFHTML
Abstract

We address the rectangular matrix completion problem by lifting the unknown matrix to a positive semidefinite matrix in higher dimension, and optimizing a nonconvex objective over the semidefinite factor using a simple gradient descent scheme. With O(μr2κ2nmax⁡(μ,log⁡n))O( \mu r^2 \kappa^2 n \max(\mu, \log n))O(μr2κ2nmax(μ,logn)) random observations of a n1×n2n_1 \times n_2n1​×n2​ μ\muμ-incoherent matrix of rank rrr and condition number κ\kappaκ, where n=max⁡(n1,n2)n = \max(n_1, n_2)n=max(n1​,n2​), the algorithm linearly converges to the global optimum with high probability.

View on arXiv
Comments on this paper