ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07057
60
35

Bayesian Model Selection of Stochastic Block Models

23 May 2016
Xiaoran Yan
ArXiv (abs)PDFHTML
Abstract

A central problem in analyzing networks is partitioning them into modules or communities. One of the best tools for this is the stochastic block model, which clusters vertices into blocks with statistically homogeneous pattern of links. Despite its flexibility and popularity, there has been a lack of principled statistical model selection criteria for the stochastic block model. Here we propose a Bayesian framework for choosing the number of blocks as well as comparing it to the more elaborate degree- corrected block models, ultimately leading to a universal model selection framework capable of comparing multiple modeling combinations. We will also investigate its connection to the minimum description length principle.

View on arXiv
Comments on this paper