ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07264
79
15
v1v2 (latest)

Trajectory probability hypothesis density filter

24 May 2016
Á. F. García-Fernández
Lennart Svensson
ArXiv (abs)PDFHTML
Abstract

This paper presents the probability hypothesis density (PHD) filter for sets of trajectories: the trajectory probability density (TPHD) filter. The TPHD filter is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. The TPHD filter is based on recursively obtaining the best Poisson approximation to the multitrajectory filtering density in the sense of minimising the Kullback-Leibler divergence. We also propose a Gaussian mixture implementation of the TPHD recursion. Finally, we include simulation results to show the performance of the proposed algorithm.

View on arXiv
Comments on this paper