ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07869
19
203

Variational Neural Machine Translation

25 May 2016
Biao Zhang
Deyi Xiong
Jinsong Su
Hong Duan
Min Zhang
    VLM
    DRL
ArXivPDFHTML
Abstract

Models of neural machine translation are often from a discriminative family of encoderdecoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoderdecoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences alone, the variational model introduces a continuous latent variable to explicitly model underlying semantics of source sentences and to guide the generation of target translations. In order to perform efficient posterior inference and large-scale training, we build a neural posterior approximator conditioned on both the source and the target sides, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on both Chinese-English and English- German translation tasks show that the proposed variational neural machine translation achieves significant improvements over the vanilla neural machine translation baselines.

View on arXiv
Comments on this paper