ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07950
48
11
v1v2v3v4v5v6 (latest)

On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About Its Nonsmooth Loss Function

25 May 2016
Xingguo Li
Haoming Jiang
Jarvis Haupt
R. Arora
Han Liu
Mingyi Hong
T. Zhao
ArXiv (abs)PDFHTML
Abstract

Many machine learning techniques sacrifice convenient computational structures to gain estimation robustness and modeling flexibility. However, by exploring the modeling structures, we find these "sacrifices" do not always require more computational efforts. To shed light on such a "free-lunch" phenomenon, we study the square-root-Lasso (SQRT-Lasso) type regression problem. Specifically, we show that the nonsmooth loss functions of SQRT-Lasso type regression ease tuning effort and gain adaptivity to inhomogeneous noise, but is not necessarily more challenging than Lasso in computation. We can directly apply proximal algorithms (e.g. proximal gradient descent, proximal Newton, and proximal Quasi-Newton algorithms) without worrying the nonsmoothness of the loss function. Theoretically, we prove that the proximal algorithms combined with the pathwise optimization scheme enjoy fast convergence guarantees with high probability. Numerical results are provided to support our theory.

View on arXiv
Comments on this paper