ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08325
16
49

Theano-MPI: a Theano-based Distributed Training Framework

26 May 2016
He Ma
Fei Mao
Graham W. Taylor
    GNN
ArXivPDFHTML
Abstract

We develop a scalable and extendable training framework that can utilize GPUs across nodes in a cluster and accelerate the training of deep learning models based on data parallelism. Both synchronous and asynchronous training are implemented in our framework, where parameter exchange among GPUs is based on CUDA-aware MPI. In this report, we analyze the convergence and capability of the framework to reduce training time when scaling the synchronous training of AlexNet and GoogLeNet from 2 GPUs to 8 GPUs. In addition, we explore novel ways to reduce the communication overhead caused by exchanging parameters. Finally, we release the framework as open-source for further research on distributed deep learning

View on arXiv
Comments on this paper