ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.02892
25
380

Linguistic Input Features Improve Neural Machine Translation

9 June 2016
Rico Sennrich
Barry Haddow
    AI4CE
ArXivPDFHTML
Abstract

Neural machine translation has recently achieved impressive results, while using little in the way of external linguistic information. In this paper we show that the strong learning capability of neural MT models does not make linguistic features redundant; they can be easily incorporated to provide further improvements in performance. We generalize the embedding layer of the encoder in the attentional encoder--decoder architecture to support the inclusion of arbitrary features, in addition to the baseline word feature. We add morphological features, part-of-speech tags, and syntactic dependency labels as input features to English<->German, and English->Romanian neural machine translation systems. In experiments on WMT16 training and test sets, we find that linguistic input features improve model quality according to three metrics: perplexity, BLEU and CHRF3. An open-source implementation of our neural MT system is available, as are sample files and configurations.

View on arXiv
Comments on this paper