ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04268
47
17

Local Canonical Correlation Analysis for Nonlinear Common Variables Discovery

14 June 2016
Or Yair
Ronen Talmon
ArXiv (abs)PDFHTML
Abstract

In this paper, we address the problem of hidden common variables discovery from multimodal data sets of nonlinear high-dimensional observations. We present a metric based on local applications of canonical correlation analysis (CCA) and incorporate it in a kernel-based manifold learning technique.We show that this metric discovers the hidden common variables underlying the multimodal observations by estimating the Euclidean distance between them. Our approach can be viewed both as an extension of CCA to a nonlinear setting as well as an extension of manifold learning to multiple data sets. Experimental results show that our method indeed discovers the common variables underlying high-dimensional nonlinear observations without assuming prior rigid model assumptions.

View on arXiv
Comments on this paper