ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04760
50
17
v1v2 (latest)

Adapting to unknown noise level in sparse deconvolution

15 June 2016
Claire Boyer
Yohann De Castro
Joseph Salmon
ArXiv (abs)PDFHTML
Abstract

In this paper, we study sparse spike deconvolution over the space of complex-valued measures when the input measure is a finite sum of Dirac masses. We introduce a modified version of the Beurling Lasso (BLasso), a semi-definite program that we refer to as the Concomitant Beurling Lasso (CBLasso). This new procedure estimates the target measure and the unknown noise level simultaneously. Contrary to previous estimators in the literature, theory holds for a tuning parameter that depends only on the sample size, so that it can be used for unknown noise level problems. Consistent noise level estimation is standardly proved. As for Radon measure estimation, theoretical guarantees match the previous state-of-the-art results in Super-Resolution regarding minimax prediction and localization. The proofs are based on a bound on the noise level given by a new tail estimate of the supremum of a stationary non-Gaussian process through the Rice method.

View on arXiv
Comments on this paper