ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.05027
38
9
v1v2 (latest)

Learning Optimal Interventions

16 June 2016
Jonas W. Mueller
David N. Reshef
George Du
Tommi Jaakkola
ArXiv (abs)PDFHTML
Abstract

Our goal is to identify beneficial interventions from observational data. We consider interventions that are narrowly focused (impacting few covariates) and may be tailored to each individual or globally enacted over a population. For applications where harmful intervention is drastically worse than proposing no change, we propose a conservative definition of the optimal intervention. Assuming the underlying relationship remains invariant under intervention, we develop efficient algorithms to identify the optimal intervention policy from limited data and provide theoretical guarantees for our approach in a Gaussian Process setting. Although our methods assume covariates can be precisely adjusted, they remain capable of improving outcomes in misspecified settings where interventions incur unintentional downstream effects. Empirically, our approach identifies good interventions in two practical applications: gene perturbation and writing improvement.

View on arXiv
Comments on this paper