Asymptotically Optimal Approximation Algorithms for Coflow Scheduling
Many modern datacenter applications involve large-scale computations composed of multiple data flows that need to be completed over a shared set of distributed resources. Such a computation completes when all of its flows complete. A useful abstraction for modeling such scenarios is a {\em coflow}, which is a collection of flows (e.g., tasks, packets, data transmissions) that all share the same performance goal. In this paper, we present the first approximation algorithms for scheduling coflows over general network topologies with the objective of minimizing total weighted completion time. We consider two different models for coflows based on the nature of individual flows: circuits, and packets. We design constant-factor polynomial-time approximation algorithms for scheduling packet-based coflows with or without given flow paths, and circuit-based coflows with given flow paths. Furthermore, we give an -approximation polynomial time algorithm for scheduling circuit-based coflows where flow paths are not given (here is the number of network edges). We obtain our results by developing a general framework for coflow schedules, based on interval-indexed linear programs, which may extend to other coflow models and objective functions and may also yield improved approximation bounds for specific network scenarios. We also present an experimental evaluation of our approach for circuit-based coflows that show a performance improvement of at least 22% on average over competing heuristics.
View on arXiv