ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06266
11
17

Detection and Tracking of Liquids with Fully Convolutional Networks

20 June 2016
Connor Schenck
Dieter Fox
ArXivPDFHTML
Abstract

Recent advances in AI and robotics have claimed many incredible results with deep learning, yet no work to date has applied deep learning to the problem of liquid perception and reasoning. In this paper, we apply fully-convolutional deep neural networks to the tasks of detecting and tracking liquids. We evaluate three models: a single-frame network, multi-frame network, and a LSTM recurrent network. Our results show that the best liquid detection results are achieved when aggregating data over multiple frames, in contrast to standard image segmentation. They also show that the LSTM network outperforms the other two in both tasks. This suggests that LSTM-based neural networks have the potential to be a key component for enabling robots to handle liquids using robust, closed-loop controllers.

View on arXiv
Comments on this paper