ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.08921
16
395

Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections

29 June 2016
Xiao-Jiao Mao
Chunhua Shen
Yubin Yang
    SupR
ArXivPDFHTML
Abstract

Image restoration, including image denoising, super resolution, inpainting, and so on, is a well-studied problem in computer vision and image processing, as well as a test bed for low-level image modeling algorithms. In this work, we propose a very deep fully convolutional auto-encoder network for image restoration, which is a encoding-decoding framework with symmetric convolutional-deconvolutional layers. In other words, the network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers capture the abstraction of image contents while eliminating corruptions. Deconvolutional layers have the capability to upsample the feature maps and recover the image details. To deal with the problem that deeper networks tend to be more difficult to train, we propose to symmetrically link convolutional and deconvolutional layers with skip-layer connections, with which the training converges much faster and attains better results.

View on arXiv
Comments on this paper