ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.09333
14
24

Dimension-Free Iteration Complexity of Finite Sum Optimization Problems

30 June 2016
Yossi Arjevani
Ohad Shamir
ArXivPDFHTML
Abstract

Many canonical machine learning problems boil down to a convex optimization problem with a finite sum structure. However, whereas much progress has been made in developing faster algorithms for this setting, the inherent limitations of these problems are not satisfactorily addressed by existing lower bounds. Indeed, current bounds focus on first-order optimization algorithms, and only apply in the often unrealistic regime where the number of iterations is less than O(d/n)\mathcal{O}(d/n)O(d/n) (where ddd is the dimension and nnn is the number of samples). In this work, we extend the framework of (Arjevani et al., 2015) to provide new lower bounds, which are dimension-free, and go beyond the assumptions of current bounds, thereby covering standard finite sum optimization methods, e.g., SAG, SAGA, SVRG, SDCA without duality, as well as stochastic coordinate-descent methods, such as SDCA and accelerated proximal SDCA.

View on arXiv
Comments on this paper