16
4

Extreme Scaling of Supercomputing with Stranded Power: Costs and Capabilities

Abstract

Power consumption (supply, heat, cost) and associated carbon emissions (environmental impact) are increasingly critical challenges in scaling supercomputing to Exascale and beyond. We proposes to exploit stranded power, renewable energy that has no value to the power grid, for scaling supercomputers, Zero-Carbon Cloud (ZCCloud), and showing that stranded power can be employed effectively to expand computing [1]. We build on those results with a new analysis of stranded power, characterizing temporal, geographic, and interval properties. We simulate production supercomputing workloads and model datacenter total-cost-of-ownership (TCO), assessing the costs and capabilities of stranded-power based supercomputing. Results show that the ZCCloud approach is cost-effective today in regions with high cost power. The ZCCloud approach reduces TCO by 21-45%, and improves cost-effectiveness up to 34%. We study many scenarios. With higher power price, cheaper computing hardware and higher system power density, benefits rise to 55%, 97% and 116% respectively. Finally, we study future extreme-scale systems, showing that beyond terascale, projected power requirements in excess of 100MW make ZCCloud up to 45% lower cost, for a fixed budget, increase peak PFLOPS achievable by 80%.

View on arXiv
Comments on this paper