ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.04357
11
90

A BCMP Network Approach to Modeling and Controlling Autonomous Mobility-on-Demand Systems

15 July 2016
Ramón Iglesias
Federico Rossi
Rick Zhang
Marco Pavone
ArXivPDFHTML
Abstract

In this paper we present a queueing network approach to the problem of routing and rebalancing a fleet of self-driving vehicles providing on-demand mobility within a capacitated road network. We refer to such systems as autonomous mobility-on-demand systems, or AMoD. We first cast an AMoD system into a closed, multi-class BCMP queueing network model. Second, we present analysis tools that allow the characterization of performance metrics for a given routing policy, in terms, e.g., of vehicle availabilities, and first and second order moments of vehicle throughput. Third, we propose a scalable method for the synthesis of routing policies, with performance guarantees in the limit of large fleet sizes. Finally, we validate our theoretical results on a case study of New York City. Collectively, this paper provides a unifying framework for the analysis and control of AMoD systems, which subsumes earlier Jackson and network flow models, provides a quite large set of modeling options (e.g., the inclusion of road capacities and general travel time distributions), and allows the analysis of second and higher-order moments for the performance metrics.

View on arXiv
Comments on this paper